# Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)
# Specify an anchor point
M_n <- matrix(c(10, 14), ncol = 1)
# Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),
pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)
# Scale the rasters
scaled_raster_list <- scale_rasters(rasters)
# Load the example mark model
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)
# Simulate a realization
example_mpp <- simulate_mpp(
sc_params = generating_parameters,
t_min = 0,
t_max = 1,
anchor_point = M_n,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
mark_model = mark_model,
xy_bounds = c(0, 25, 0, 25),
include_comp_inds = TRUE,
competition_radius = 10,
correction = "none",
thinning = TRUE
)
# Plot the realization and provide a summary
plot(example_mpp, pattern_type = "simulated")
summary(example_mpp)
Run the code above in your browser using DataLab