Learn R Programming

leafR (version 0.3.5)

GC: Gini coefficient of foliage structural diversity

Description

Calculates the Gini coefficient (GC) from individual LIDAR returns (i.e. without voxelization), as described for the L-coefficient of variation (equivalent to Gini) in Valbuena et al. (2017).

Usage

GC(normlas.file, threshold = 1)

Arguments

normlas.file

normalized las file

threshold

numerical, defines the minimum height considered to represent an echo from leaves.

Value

A numeric containing the Gini coefficient (GC) calculated from the normalized LAS file

References

Valbuena R., Packalen P., Mart<U+00ED>n-Fern<U+00E1>ndez S., Maltamo M. (2012) Diversity and equitability ordering profiles applied to the study of forest structure. Forest Ecology and Management 276: 185<U+2013>195. 10.1016/j.foreco.2012.03.036 Valbuena R., Maltamo M., Meht<U+00E4>talo L., Packalen P. (2017) Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sensing of Environment. 194: 437<U+2013>446. 10.1016/j.rse.2016.10.024

Examples

Run this code
# NOT RUN {
# Get the example laz file
normlas.file = system.file("extdata", "lidar_example.laz", package="leafR")

GC(normlas.file, threshold =1)

# }

Run the code above in your browser using DataLab