Auxiliary binary classifier for Learning with Subset Stacking (LESS)
R6 class of LESSBinaryClassifier
less::BaseEstimator
-> less::SklearnEstimator
-> less::LESSBase
-> LESSBinaryClassifier
Inherited methods
less::BaseEstimator$get_all_fields()
less::BaseEstimator$get_attributes()
less::SklearnEstimator$get_type()
less::SklearnEstimator$predict()
less::LESSBase$get_d_normalize()
less::LESSBase$get_frac()
less::LESSBase$get_isFitted()
less::LESSBase$get_n_neighbors()
less::LESSBase$get_n_replications()
less::LESSBase$get_n_subsets()
less::LESSBase$get_random_state()
less::LESSBase$get_replications()
less::LESSBase$get_scaling()
less::LESSBase$get_val_size()
new()
Creates a new instance of R6 Class of LESSBinaryClassifier
LESSBinaryClassifier$new(
frac = NULL,
n_neighbors = NULL,
n_subsets = NULL,
n_replications = 20,
d_normalize = TRUE,
val_size = NULL,
random_state = NULL,
tree_method = function(X) KDTree$new(X),
cluster_method = NULL,
local_estimator = LinearRegression$new(),
global_estimator = DecisionTreeClassifier$new(),
distance_function = NULL,
scaling = TRUE,
warnings = TRUE
)
frac
fraction of total samples used for the number of neighbors (default is 0.05)
n_neighbors
number of neighbors (default is NULL)
n_subsets
number of subsets (default is NULL)
n_replications
number of replications (default is 20)
d_normalize
distance normalization (default is TRUE)
val_size
percentage of samples used for validation (default is NULL - no validation)
random_state
initialization of the random seed (default is NULL)
tree_method
method used for constructing the nearest neighbor tree, e.g., less::KDTree (default)
cluster_method
method used for clustering the subsets, e.g., less::KMeans (default is NULL)
local_estimator
estimator for the local models (default is less::LinearRegression)
global_estimator
estimator for the global model (default is less::DecisionTreeRegressor)
distance_function
distance function evaluating the distance from a subset to a sample, e.g., df(subset, sample) which returns a vector of distances (default is RBF(subset, sample, 1.0/n_subsets^2))
scaling
flag to normalize the input data (default is TRUE)
warnings
flag to turn on (TRUE) or off (FALSE) the warnings (default is TRUE)
fit()
Dummy fit function that calls the proper method according to validation and clustering parameters Options are:
Default fitting (no validation set, no clustering)
Fitting with validation set (no clustering)
Fitting with clustering (no) validation set)
Fitting with validation set and clustering
LESSBinaryClassifier$fit(X, y)
X
2D matrix or dataframe that includes predictors
y
1D vector or (n,1) dimensional matrix/dataframe that includes response variables
Fitted R6 Class of LESSBinaryClassifier
predict_proba()
Prediction probabilities are evaluated for the test samples in X0
LESSBinaryClassifier$predict_proba(X0)
X0
2D matrix or dataframe that includes predictors
get_global_estimator()
Auxiliary function returning the global_estimator
LESSBinaryClassifier$get_global_estimator()
set_random_state()
Auxiliary function that sets random state attribute of the self class
LESSBinaryClassifier$set_random_state(random_state)
random_state
seed number to be set as random state
self
clone()
The objects of this class are cloneable with this method.
LESSBinaryClassifier$clone(deep = FALSE)
deep
Whether to make a deep clone.