## example without dimension reduction
k <- kmatrixGauss(x = trainData[,-1])
y <- trainData[,1]
r <- 26 # dimensionality of reduced space. Here no dimension reduction is performed
result <- klfda(k,y,r,metric="plain")
transformedMat <- result$Z # transformed training data
metric.train <- as.data.frame(cbind(trainData[,1],transformedMat))
colnames(metric.train)=colnames(trainData)
## example with dimension reduction
k <- kmatrixGauss(x = trainData[,-1])
y <- trainData[,1]
r <- 3 # dimensionality of reduced space
result <- klfda(k,y,r,metric="plain")
transformMat <- result$T # transforming matrix - distance metric
# transformed training data with Style
transformedMat <- result$Z # transformed training data
metric.train <- as.data.frame(cbind(trainData[,1],transformedMat))
colnames(metric.train)[1] <- "Style"
# transformed testing data with Style (unfinished)
metric.test <- kmatrixGauss(x = testData[,-1])
metric.test <- as.matrix(testData[,-1]) %*% transformMat
metric.test <- as.data.frame(cbind(testData[,1],metric.test))
colnames(metric.test)[1] <- "Style"Run the code above in your browser using DataLab