## Not run:
# ## example without dimension reduction
# k <- trainData[,-1]
# y <- trainData[,1]
# r <- 26 # dimensionality of reduced space. Here no dimension reduction is performed
# result <- lfda(k,y,r,metric="plain")
# transformedMat <- result$Z # transformed training data
# metric.train <- as.data.frame(cbind(trainData[,1],transformedMat))
# colnames(metric.train)=colnames(trainData)
#
# ## example with dimension reduction
# k <- trainData[,-1]
# y <- trainData[,1]
# r <- 3 # dimensionality of reduced space
#
# result <- lfda(k,y,r,metric="weighted")
# transformMat <- result$T # transforming matrix - distance metric
#
# # transformed training data with Style
# transformedMat <- result$Z # transformed training data
# metric.train <- as.data.frame(cbind(trainData[,1],transformedMat))
# colnames(metric.train)[1] <- "Style"
#
# # transformed testing data with Style
# metric.test <- as.matrix(testData[,-1]) %*% transformMat
# metric.test <- as.data.frame(cbind(testData[,1],metric.test))
# colnames(metric.test)[1] <- "Style"
# ## End(Not run)
Run the code above in your browser using DataLab