self(X, Y, beta = 0.5, r, metric = c("orthonormalized", "plain", "weighted"), kNN = 5, minObsPerLabel = 5)Sugiyama, M (2007). Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, vol.8, 1027--1061.
Sugiyama, M (2006). Local Fisher discriminant analysis for supervised dimensionality reduction. In W. W. Cohen and A. Moore (Eds.), Proceedings of 23rd International Conference on Machine Learning (ICML2006), 905--912.
lfda for LFDA and klfda for the kernelized variant of
LFDA (Kernel LFDA).
## Not run:
# X <- iris[,-5]
# Y <- iris[,5]
# result <- self(X,Y,beta = 0.1, r = 3, metric = "plain")
# ## End(Not run)
Run the code above in your browser using DataLab