Wrapper function for computing the derivative of the weight matrix w.r.t lambda \(\lambda\). This involves computing terms related to the derivative of \(1/(1+\textbf{x}^{T}\textbf{U}\textbf{G}\textbf{x})\).
compute_dW_dlambda_wrapper(
G,
A,
GXX,
Ghalf,
dG_dlambda,
dGhalf_dlambda,
AGAInv,
nc,
K,
parallel,
cl,
chunk_size,
num_chunks,
rem_chunks
)
Scalar value representing the trace derivative component.
A list of penalty matrices \(\textbf{G}\) for each partition
Constraint matrix \(\textbf{A}\)
List of \(\textbf{G}\textbf{X}^{T}\textbf{X}\) products
List of \(\textbf{G}^{1/2}\) matrices
List of \(d\textbf{G}/d\lambda\) matrices
List of \(d\textbf{G}^{1/2}/d\lambda\) matrices
Inverse of \(\textbf{A}^{T}\textbf{G}\textbf{A}\)
Number of columns
Number of partitions minus 1 (\(K\))
Logical to enable parallel processing
Cluster object for parallel computation
Size of chunks for parallel processing
Number of chunks
Remainder chunks