## Data
t <- sort(runif(100, -5, 5))
y <- sin(t) - 0.1*t^2 + rnorm(100)
## Model keeping penalties fixed
model_fit <- lgspline(t, y, opt = FALSE)
## Full joint log-likelihood, conditional upon known sigma^2 = 1
jntloglik <- sum(dnorm(model_fit$y,
model_fit$ytilde,
1,
log = TRUE)) +
prior_loglik(model_fit, sigmasq = 1)
print(jntloglik)
Run the code above in your browser using DataLab