## Simulate some data and fit using default settings
set.seed(1234)
t <- runif(1000, -10, 10)
y <- 2*sin(t) + -0.06*t^2 + rnorm(length(t))
# Ensure varcovmat is returned for Wald tests
model_fit <- lgspline(t, y, return_varcovmat = TRUE)
## Use default critical value (likely qnorm(0.975) if not set in fit)
wald_default <- wald_univariate(model_fit)
print(wald_default)
## Specify t-distribution critical value
eff_df <- NA
if(!is.null(model_fit$N) && !is.null(model_fit$trace_XUGX)) {
eff_df <- model_fit$N - model_fit$trace_XUGX
}
if (!is.na(eff_df) && eff_df > 0) {
wald_t <- wald_univariate(
model_fit,
cv = stats::qt(0.975, eff_df)
)
print(wald_t)
} else {
warning("Effective degrees of freedom invalid.")
}
Run the code above in your browser using DataLab