## Not run:
# #shows the table
# data(demoUk)
# #create an actuarial table using a Brass - Logit approach
# data(soa08Act)
# x=seq(0, 110,1)
# qx=numeric(length(x))
# for(i in 1:111) qx[i]=qxt(soa08Act, x=i, t=1)
# temp=data.frame(Age=x, qx=qx)
# db=merge(temp, demoUk)
# db$lnAm92=with(db, log(AM92))
# db$lnAf92=with(db, log(AF92))
# db$logqx=with(db, log(qx))
# #do the brass model
# brassModelAM<-lm(lnAm92~logqx, data=db)
# brassModelAF<-lm(lnAf92~logqx, data=db)
# temp$logqx=log(temp$qx)
# #fit the probabilities
# temp$logAm92=predict(brassModelAM, newdata=temp)
# temp$logAf92=predict(brassModelAF, newdata=temp)
# temp$AM92=with(temp, exp(logAm92))
# temp$AF92=with(temp, exp(logAf92))
# missingAges=setdiff(temp$Age, demoUk$Age)
# #prepare the data
# dataOne=demoUk[,c("Age", "AM92", "AF92")]
# dataTwo=subset(temp[,c("Age", "AM92", "AF92")], Age
# temp=rbind(dataOne, dataTwo)
# dataFull=temp[order(temp$Age),]
# #setting last attainable year death probability equal to one
# dataFull$AM92[length(temp$Age)]=1
# dataFull$AF92[length(temp$Age)]=1
# #produce the tables
# AM92Lt<-probs2lifetable(probs=dataFull$AM92,
# radix=100000,type="qx", name="AM92")
# AF92Lt<-probs2lifetable(probs=dataFull$AF92,
# radix=100000,type="qx", name="AF92")
# ## End(Not run)
Run the code above in your browser using DataLab