Parameter docs shared by lgb.train
, lgb.cv
, and lightgbm
List of callback functions that are applied at each iteration.
a lgb.Dataset
object, used for training. Some functions, such as lgb.cv
,
may allow you to pass other types of data like matrix
and then separately supply
label
as a keyword argument.
int. Activates early stopping. Requires at least one validation data and one metric. If there's more than one, will check all of them except the training data. Returns the model with (best_iter + early_stopping_rounds). If early stopping occurs, the model will have 'best_iter' field.
evaluation function(s). This can be a character vector, function, or list with a mixture of strings and functions.
a. character vector: If you provide a character vector to this argument, it should contain strings with valid evaluation metrics. See The "metric" section of the documentation for a list of valid metrics.
b. function:
You can provide a custom evaluation function. This
should accept the keyword arguments preds
and dtrain
and should return a named
list with three elements:
name
: A string with the name of the metric, used for printing
and storing results.
value
: A single number indicating the value of the metric for the
given predictions and true values
higher_better
: A boolean indicating whether higher values indicate a better fit.
For example, this would be FALSE
for metrics like MAE or RMSE.
c. list: If a list is given, it should only contain character vectors and functions. These should follow the requirements from the descriptions above.
evaluation output frequency, only effect when verbose > 0
path of model file of lgb.Booster
object, will continue training from this model
number of training rounds
objective function, can be character or custom objective function. Examples include
regression
, regression_l1
, huber
,
binary
, lambdarank
, multiclass
, multiclass
List of parameters
verbosity for output, if <= 0, also will disable the print of evaluation during training
"early stopping" refers to stopping the training process if the model's performance on a given validation set does not improve for several consecutive iterations.
If multiple arguments are given to eval
, their order will be preserved. If you enable
early stopping by setting early_stopping_rounds
in params
, by default all
metrics will be considered for early stopping.
If you want to only consider the first metric for early stopping, pass
first_metric_only = TRUE
in params
. Note that if you also specify metric
in params
, that metric will be considered the "first" one. If you omit metric
,
a default metric will be used based on your choice for the parameter obj
(keyword argument)
or objective
(passed into params
).