# visualisation of the data
plot(t(Minkdiet$Prey),xlim=c(-25,-13),xlab="d13C",ylab="d15N",
main="Minkdiet",sub="Ben-David et al. (1979)")
text(t(Minkdiet$Prey)-0.1,colnames(Minkdiet$Prey))
points(t(Minkdiet$Mink),pch=16,cex=2)
text(t(Minkdiet$Mink)-0.15,"MINK",cex=1.2)
legend("bottomright",pt.cex=c(1,2),pch=c(1,16),c("food","predator"))
# Generate the food web model input matrices
# the equalities:
E <- rbind(Minkdiet$Prey,rep(1,7))
F <- c(Minkdiet$Mink,1)
# the inequalities (all pi>0)
G <- diag(7)
H <- rep(0,7)
# Select the parsimonious solution
parsimonious <- ldei(E,F,G=G,H=H)
# show results
data.frame(food=colnames(Minkdiet$Prey),fraction=parsimonious$X)
dotchart(x=as.vector(parsimonious$X),labels=colnames(Minkdiet$A),
main="Estimated diet composition of Mink",
sub="using ldei and xranges",pch=16)
# Ranges of diet composition
iso <- xranges(E,F,ispos=TRUE)
segments(iso[,1],1:ncol(E),iso[,2],1:ncol(E))
legend ("topright",pch=c(16,NA),lty=c(NA,1),
legend=c("parsimonious","range"))
pairs (xsample(E=E,F=F,G=diag(7),H=rep(0,7),iter=1000)$X,
main="Minkdiet 1000 solutions, using xsample")Run the code above in your browser using DataLab