
Last chance! 50% off unlimited learning
Sale ends in
selectModel(y, designlist, criterion="aic", df.prior=0, s2.prior=NULL, s2.true=NULL, ...)
numeric
, matrix
, MAList
, marrayNorm
, ExpressionSet
or PLMset
."aic"
, "bic"
or "mallowscp"
.squeezeVar
df.prior
>0.criterion="mallowscp"
.lmFit
The criteria have been generalized slightly to accommodate an information prior on the variances represented by s2.prior
and df.prior
or by s2.post
.
Suitable values for these parameters can be estimated using squeezeVar
.
nprobes <- 100
narrays <- 5
y <- matrix(rnorm(nprobes*narrays),nprobes,narrays)
A <- c(0,0,1,1,1)
B <- c(0,1,0,1,1)
designlist <- list(
None=cbind(Int=c(1,1,1,1,1)),
A=cbind(Int=1,A=A),
B=cbind(Int=1,B=B),
Both=cbind(Int=1,AB=A*B),
Add=cbind(Int=1,A=A,B=B),
Full=cbind(Int=1,A=A,B=B,AB=A*B)
)
out <- selectModel(y,designlist)
table(out$pref)
Run the code above in your browser using DataLab