s.linlir(dat.idf, var = NULL, p = 0.5, bet, epsilon = 0, b.grid = 1000)
## S3 method for class 's.linlir':
print(x, ...)
## S3 method for class 's.linlir':
summary(object, ...)
## S3 method for class 's.linlir':
plot(x, y=NULL, ..., typ, para.typ = "polygon", b.range = c(-1e-05, 1e-05), b.grid = 1000, nb.func = 1000, seed.func = NULL, pl.lrm = TRUE, pl.band = FALSE, pl.dat = FALSE, k.x = 1, k.y = 1, p.cex = 1, x.adj = 0.5, x.padj = 3, y.las = 0, y.adj = 1, y.padj = 0, x.lim = c(0, 0), y.lim = c(0, 0), x.lab = " ", y.lab = " ")
idf
-object to be analyzed.idf
-object to be analyzed.plot
and print
. Here x
is the s.linlir
-object to be plotted or printed.plot
, print
and summary
: Other parameters.s.linlir
-object to be summarized.plot
. Here y=NULL
."para"
: plot undominated parameter set, "lrm"
: plot f.lrm
, "func"
: plot undominated regression functions.typ="para"
are "polygon"
(default) or "points"
(approximation).typ="para"
. If default is chosen, then x.lim
ist taken as b.range
.typ="func"
.typ="func"
. (Optional)typ=c("para","func")
. If pl.lrm=TRUE
(default), f.lrm
is highlighted in the plot.typ="func"
. If pl.band=TRUE
, the band around f.lrm
is added to the plot.typ=c("lrm","func")
. If pl.dat=TRUE
, the data are plotted in the background of the plot.k.x
is the step width along the abscissa.k.y
is the step width along the ordinate.p.cex
is the point size to fill the rectangles with grey color.y.las=1
will turn the axis labels and the text in reading direction.y.adj
regulates the position of the text for the ordinate in reading direction, i.e. if y.las=0
it sets the vertical position and if y.las=1
the horizontal position.y.padj
regulates the position of the text for the ordinate orthogonal to the reading direction, i.e. if y.las=0
it sets the horizontal position and if y.las=1
the vertical position.n
x4 data.frame
containing the imprecise data of the analyzed variables. Columns 1 and 2 correspond to the interval-valued observations of the regressor variable, columns 3 and 4 to those of the dependent variable.s.linlir
.idf.create
,
gen.lms
,
kl.ku
,
undom.para
data('toy.smps')
toy.idf <- idf.create(toy.smps, var.labels=c("x","y"))
test <- s.linlir(toy.idf, bet=0.5)
test
summary(test)
plot(test, typ="para", x.adj=0.7, y.las=1, y.adj=6, y.padj=-3)
plot(test, typ="func", pl.lrm=FALSE, x.adj=0.7, y.adj=0.7, y.padj=-3)
plot(test, typ="lrm", pl.dat=TRUE, pl.band=TRUE, k.x=10, k.y=10, y.las=1, y.adj=6)
Run the code above in your browser using DataLab