fastQuantile: linear Algorithm for Quantile Simulation
Description
This is a linear algorithm for quantile simulation under null hypothesis in multiscale change-point segmentation.
Usage
fastQuantile(alpha, n, r=round(50/min(alpha, 1-alpha)),
mType=c("norm-pen","pois"), seed = 123, ...)
Arguments
alpha
a scalar with values in [0, 1]; the alpha-quantile of the null distribution of the multiscale statistic via Monte Carlo simulation
n
number of observations
r
number of Monte Carlo simulations
mType
"norm-pen" simulates the multiscale statistic from Normal regression model, "pois" simulates the multiscale statistic from Poission regression model.
seed
data seed
...
further arguments passed to penalty function
Value
A scalar quantile value q.
References
Frick, K., Munk, A., and Sieling, H. (2014). Multiscale Change-Point Inference.
J. R. Statist. Soc. B, with discussion and rejoinder by the authors, 76:495--580.
Li, H., Munk, A., and Sieling, H. (2015). FDR-control in multiscale change-point segmentation. arXiv:1412.5844.
# NOT RUN {# simulate quantiles for multiscale statistics from Normal regression model seed = 123 q <- fastQuantile(0.9, 500, 100, mType = "norm-pen")
# }