Learn R Programming

lineqGPR (version 0.1.1)

create.lineqGP: Creation Method for the "lineqGP" S3 Class

Description

Creation method for the "lineqGP" S3 class.

Usage

# S3 method for lineqGP
create(x, y, constrType)

Arguments

x

a vector or matrix with the input data. The dimensions should be indexed by columns.

y

a vector with the output data.

constrType

a character string corresponding to the type of the inequality constraint. Options: "boundedness", "monotonicity", "convexity", "linear"; Multiple constraints can be also defined, e.g. constrType = c("boundedness", "monotonicity").

Value

A list with the following elements.

x,y,constrType

see Arguments.

d

a number corresponding to the input dimension.

constrIdx

for d > 1, a logical vector with the indices of active constrained dimensions.

localParam

a list with specific parameters required for "lineqGP" models: m (number of basis functions), sampler, and samplingParams. See simulate.lineqGP.

kernParam

a list with the kernel parameters: par (kernel parameters), type, nugget. See kernCompute

bounds

the limit values if constrType = "boundedness".

(Lambda,lb,ub)

the linear system of inequalities if constrType = "linear".

References

Lopez-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2017), "Finite-dimensional Gaussian approximation with linear inequality constraints". ArXiv e-prints [link]

See Also

augment.lineqGP, predict.lineqGP, simulate.lineqGP

Examples

Run this code
# NOT RUN {
# creating the model
sigfun <- function(x) return(1/(1+exp(-7*(x-0.5))))
x <- seq(0, 1, length = 5)
y <- sigfun(x)
model <- create(class = "lineqGP", x, y, constrType = "monotonicity")
model

# }

Run the code above in your browser using DataLab