library(RWeka)
data(satsolvers)
trainTest = cvFolds(satsolvers)
res = cluster(clusterer=XMeans, data=trainTest, pre=normalize)
# the total number of successes
sum(successes(trainTest, res))
# predictions on the entire data set
res$predictor(subset(satsolvers$data, TRUE, satsolvers$features))
# determine best by number of successes
res = cluster(clusterer=XMeans, data=trainTest, bestBy="successes", pre=normalize)
sum(successes(trainTest, res))
library(flexclust)
res = cluster(clusterer=function(x) { kcca(x, length(satsolvers$performance)) },
data=trainTest, pre=normalize)
# ensemble clustering
rese = cluster(clusterer=list(XMeans, make_Weka_clusterer("weka/clusterers/EM"),
function(x) { kcca(x, length(satsolvers$performance)) }),
data=trainTest, pre=normalize)
# ensemble clustering with a classifier to combine predictions
rese = cluster(clusterer=list(XMeans, make_Weka_clusterer("weka/clusterers/EM"),
function(x) { kcca(x, length(satsolvers$performance)) }, .combine=J48),
data=trainTest, pre=normalize)Run the code above in your browser using DataLab