data(satsolvers)
folds = cvFolds(satsolvers)
res = regression(regressor=makeLearner("regr.lm"), data=folds)
# the total number of successes
sum(successes(folds, res))
# predictions on the entire data set
res$predictor(subset(satsolvers$data, TRUE, satsolvers$features))
res = regression(regressor=makeLearner("regr.ksvm"), data=folds)
# combine performance predictions using classifier
ress = regression(regressor=makeLearner("regr.ksvm"),
data=folds,
combine=makeLearner("classif.J48"))
# add pairwise differences to performance predictions before running classifier
ress = regression(regressor=makeLearner("regr.ksvm"),
data=folds,
combine=makeLearner("classif.J48"),
expand=function(x) { cbind(x, combn(c(1:ncol(x)), 2,
function(y) { abs(x[,y[1]] - x[,y[2]]) })) })Run the code above in your browser using DataLab