Learn R Programming

lmds

lmds: Landmark Multi-Dimensional Scaling

A fast dimensionality reduction method scaleable to large numbers of samples. Landmark Multi-Dimensional Scaling (LMDS) is an extension of classical Torgerson MDS, but rather than calculating a complete distance matrix between all pairs of samples, only the distances between a set of landmarks and the samples are calculated.

library(lmds)
x <- as.matrix(iris[,1:4])
dimred <- lmds(x, ndim = 2)
qplot(dimred[,1], dimred[,2]) + labs(title = "lmds()") + theme_classic()

dimred <- cmdscale(dist(x))
qplot(dimred[,1], dimred[,2]) + labs(title = "cmdscale()") + theme_classic()

Execution time

The execution time of lmds() scales linearly with respect to the dataset size.

Latest changes

Check out news(package = "lmds") or NEWS.md for a full list of changes.

Recent changes in lmds 0.1.0

Initial release of lmds.

  • A fast dimensionality reduction method scaleable to large numbers of samples. Landmark Multi-Dimensional Scaling (LMDS) is an extension of classical Torgerson MDS, but rather than calculating a complete distance matrix between all pairs of samples, only the distances between a set of landmarks and the samples are calculated.

Copy Link

Version

Install

install.packages('lmds')

Monthly Downloads

471

Version

0.1.0

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Robrecht Cannoodt

Last Published

September 27th, 2019

Functions in lmds (0.1.0)

lmds

Landmark MDS
cmdscale_landmarks

Perform MDS on landmarks and project other samples to the same space
select_landmarks

Select landmarks from dataset