# lmeControl

From lme4 v0.6-6
by Douglas Bates

##### Control values for lme

The values supplied in the function call replace the defaults and a
list with all possible arguments is returned. The returned list is
used as the `control`

argument in the `lme`

function.

- Keywords
- models

##### Usage

```
lmeControl(maxIter, msMaxIter, tolerance, niterEM, msTol,
msScale, msVerbose, PQLmaxIt, .relStep,
nlmStepMax, optimizer,
EMverbose, analyticGradient, analyticHessian)
```

##### Arguments

- maxIter
- maximum number of iterations for the
`lme`

optimization algorithm. Default is 50. - msMaxIter
- maximum number of iterations
for the
`nlm`

optimization step inside the`lme`

optimization. Default is 50. - tolerance
- tolerance for the convergence criterion in the
`lme`

algorithm. Default is 1e-6. - niterEM
- number of iterations for the EM algorithm used to refine the initial estimates of the random effects variance-covariance coefficients. Default is 25.
- msTol
- tolerance for the convergence criterion in
`nlm`

, passed as the`rel.tolerance`

argument to the function (see documentation on`nlm`

). Default is 1e-7. - msScale
- scale function passed as the
`scale`

argument to the`nlm`

function (see documentation on that function). Default is`lmeScale`

. - msVerbose
- a logical value passed as the
`trace`

argument to`nlm`

(see documentation on that function). Default is`getOption("verbose")`

. - PQLmaxIt
- maximum number of iterations for the PQL algorithm in
`GLMM`

. - .relStep
- relative step for numerical derivatives
calculations. Default is
`.Machine$double.eps^(1/3)`

. - nlmStepMax
- stepmax value to be passed to nlm. See
`nlm`

for details. Default is 100.0 - optimizer
- the optimizer to be used - either
`"optim"`

, the default, or`"nlm"`

- EMverbose
- a logical value indicating if verbose output should be
produced during the EM iterations. Default is
`getOption("verbose"`

. - analyticGradient
- a logical value indicating if the analytic
gradient of the objective should be used. This option is for testing
purposes and would not normally be changed from the default. Default
is
`TRUE`

. - analyticHessian
- a logical value indicating if the analytic
hessian of the objective should be calculated. This is an
experimental feature and at present the default is
`FALSE`

. In future we may use the analytic Hessian in the optimization.

##### Value

- a list with a component for each of the possible arguments.

##### synopsis

lmeControl(maxIter = 50, msMaxIter = 50, tolerance = sqrt((.Machine$double.eps)), niterEM = 20, msTol = sqrt(.Machine$double.eps), msScale, msVerbose = getOption("verbose"), PQLmaxIt = 20, .relStep = (.Machine$double.eps)^(1/3), nlmStepMax = NULL, optimizer="nlm", EMverbose = getOption("verbose"), analyticGradient = TRUE, analyticHessian=FALSE))

##### See Also

##### Examples

```
# decrease the maximum number iterations in the ms call and
# request that information on the evolution of the ms iterations be printed
str(lmeControl(msMaxIter = 20, msVerbose = TRUE))
```

*Documentation reproduced from package lme4, version 0.6-6, License: GPL version 2 or later*

### Community examples

Looks like there are no examples yet.