mer
class represents linear or generalized
linear or nonlinear mixed-effects models. It incorporates
sparse model matrices for the random effects and corresponding sparse
Cholesky factors. The summary.mer
class represents the summary
of these objects.## Methods with "surprising" arguments
## S3 method for class 'mer':
deviance(object, REML = NULL, \dots)
## S3 method for class 'mer':
expand(x, sparse = TRUE, \dots)
## S3 method for class 'mer':
logLik(object, REML = NULL, \dots)
## S3 method for class 'mer':
print(x, digits, correlation, symbolic.cor, signif.stars, \dots)
mer
.NULL
, the default, or NA
indicates that the REML values
should be returned if the model was fit by REML, otherwise the ML values.mer
to expand.T
and S
matrices should be returned.max(3, getOption("digits") -
3)
.TRUE
.FALSE
.getOption("show.signif.stars")
.lmer()
, glmer()
and nlmer()
,
which produce these objects.
VarCorr
for extracting the variance and
correlation components of the random-effects terms.
mcmcsamp
for posterior MCMC sampling of a mer
fit;
simulate-mer
for simulation and parametric bootstrapping(fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject),
data = sleepstudy))
print(fm2, digits = 10, corr = FALSE) # more precision; no corr.matrix
logLik(fm2)
(V2 <- vcov(fm2))
terms(fm2)
str(model.matrix(fm2))
str(model.frame(fm2))
str(resid(fm2))
VarCorr(fm2)
ee <- expand(fm2)
op <- options(digits = 3)
tcrossprod(ee$sigma * ee$P %*% ee$T %*% ee$S)
options(op)
Run the code above in your browser using DataLab