Last chance! 50% off unlimited learning
Sale ends in
method = "Nelder-Mead"
, in R's optim()
), and
using reverse communications.
Nelder_Mead(fn, par, lower = rep.int(-Inf, n), upper = rep.int(Inf, n), control = list())
function
of a single numeric vector argument
returning a numeric scalar.-Inf
).Inf
).
stop(.)
, but rather only call
warning
and return a result which might inspected.
Defaults to FALSE
, i.e., stop on non-convergence.
list
with components
x
providing the minimum0
, an error code:
nm_evals
: maximum evaluations reachednm_forced
: ?nm_nofeasible
: cannot generate a feasible simplexnm_x0notfeasible
: initial x is not feasible (?)list
of control settings after
substituting for defaults.NelderMead
class definition and generator
function.
fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
p0 <- c(-1.2, 1)
oo <- optim(p0, fr) ## also uses Nelder-Mead by default
o. <- Nelder_Mead(fr, p0)
o.1 <- Nelder_Mead(fr, p0, control=list(verbose=1))# -> some iteration output
stopifnot(identical(o.[1:4], o.1[1:4]),
all.equal(o.$par, oo$par, tolerance=1e-3))# diff: 0.0003865
o.2 <- Nelder_Mead(fr, p0, control=list(verbose=3, XtolRel=1e-15, FtolAbs= 1e-14))
all.equal(o.2[-5],o.1[-5], tolerance=1e-15)# TRUE, unexpectedly
Run the code above in your browser using DataLab