xyplot()
draws zeta diagrams, also visualizing
confidence intervals and their asymmetry.
densityplot()
draws the profile densities.
splom()
draws profile pairs plots. Contours are for the
marginal two-dimensional regions (i.e. using df = 2).
"xyplot"(x, data = NULL, levels = sqrt(qchisq(pmax.int(0, pmin.int(1, conf)), df = 1)), conf = c(50, 80, 90, 95, 99)/100, absVal = FALSE, scales=NULL, which = 1:nptot, ...)
"densityplot"(x, data, ...)
"splom"(x, data, levels = sqrt(qchisq(pmax.int(0, pmin.int(1, conf)), 2)), conf = c(50, 80, 90, 95, 99)/100, which = 1:nptot, draw.lower = TRUE, draw.upper = TRUE, ...)
conf
.abs(.)
olute values
should be plotted, often preferred for confidence interval
visualization.xyplot
profile-methods
for details).xyplot
,
densityplot
, or splom
from package
lattice, respectively."trellis"
object (lattice package)
which when print()
ed produces plots on the current
graphic device."trellis"
object, see above."trellis"
object, see above.profile
, notably for an
example.
## see example("profile.merMod")
Run the code above in your browser using DataLab