Compute confidence intervals on the parameters of a *lmer()
model fit (of class"'>merMod"
).
# S3 method for merMod
confint(object, parm, level = 0.95,
method = c("profile", "Wald", "boot"), zeta,
nsim = 500,
boot.type = c("perc","basic","norm"),
FUN = NULL, quiet = FALSE,
oldNames = TRUE, ...)
# S3 method for thpr
confint(object, parm, level = 0.95,
zeta, non.mono.tol=1e-2,
...)
a fitted [ng]lmer model or profile
parameters for which intervals are sought. Specified by an
integer vector of positions, character
vector of
parameter names, or (unless doing parametric bootstrapping with a
user-specified bootstrap function) "theta_"
or "beta_"
to specify variance-covariance or fixed effects parameters only: see the
which
parameter of profile
.
confidence level
a character
string determining the method
for computing the confidence intervals.
(for method = "profile"
only:) likelihood cutoff
(if not specified, as by default, computed from level
).
number of simulations for parametric bootstrap intervals.
bootstrap function; if NULL
, an internal function
that returns the fixed-effect parameters as well as the
random-effect parameters on the standard deviation/correlation scale
will be used. See bootMer
for details.
bootstrap confidence interval type, as described
in boot.ci
. (Methods ‘stud’ and ‘bca’
are unavailable because they require additional components to be
calculated.)
(logical) suppress messages about computationally intensive profiling?
(logical) use old-style names for variance-covariance
parameters, e.g. ".sig01"
, rather than newer (more informative) names such as
"sd_(Intercept)|Subject"
? (See signames
argument to
profile
).
tolerance for detecting a non-monotonic profile and warning/falling back to linear interpolation
additional parameters to be passed to
profile.merMod
or bootMer
, respectively.
a numeric table (matrix
with column and row names) of
confidence intervals; the confidence intervals are computed on the
standard deviation scale.
Depending on the method
specified, confint()
computes
confidence intervals by
"profile"
:computing a likelihood profile and finding the appropriate cutoffs based on the likelihood ratio test;
"Wald"
:approximating
the confidence intervals (of fixed-effect parameters
only; all variance-covariance parameters
CIs will be returned as NA
)
based on the estimated local curvature of the
likelihood surface;
"boot"
:performing parametric
bootstrapping with confidence intervals computed from the
bootstrap distribution according to boot.type
(see
bootMer
, boot.ci
).
# NOT RUN {
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
fm1W <- confint(fm1, method="Wald")# very fast, but ....
fm1W
(fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy))
(CI2 <- confint(fm2, maxpts = 8)) # method = "profile"; 8: to be much faster
# }
# NOT RUN {
testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1
if(interactive() || testLevel >= 3) {
## ~20 seconds, MacBook Pro laptop
system.time(fm1P <- confint(fm1, method="profile", ## default
oldNames = FALSE))
## ~ 40 seconds
system.time(fm1B <- confint(fm1, method="boot",
.progress="txt", PBargs=list(style=3)))
} else
load(system.file("testdata","confint_ex.rda",package="lme4"))
fm1P
fm1B
# }
Run the code above in your browser using DataLab