data(DT_example)
DT <- DT_example
A <- A_example
head(DT)
## Compound simmetry (CS) model
ans1 <- lmebreed(Yield~Env + (1|Name) + (1|Env:Name),
data=DT)
vc <- VarCorr(ans1); print(vc,comp=c("Variance"))
BLUP <- ranef(ans1, condVar=TRUE)
PEV <- lapply(BLUP, function(x){attr(x, which="postVar")}) # take sqrt() for SEs
# \donttest{
## Main (M) + Diagonal (DIAG) model
## with relationship matrix
ansCSDG <- lmebreed(Yield ~ Env + (Env||Name),
relmat = list(Name = A ),
data=DT)
vc <- VarCorr(ansCSDG); print(vc,comp=c("Variance"))
## Main (M) + Diagonal (DIAG) model
## with diagonal residuals
## with relationship matrix
ansCSDG <- lmebreed(Yield ~ Env + (Env||Name) + (0+Env||unitsR),
relmat = list(Name = A ),
data=DT)
vc <- VarCorr(ansCSDG); print(vc,comp=c("Variance"))
sigma(ansCSDG)^2 # error variance
# }
Run the code above in your browser using DataLab