Learn R Programming

lmeNB (version 1.3)

RElmeNB: Calculate predicted values of E(Gi|Yi) given the estimates of parameters

Description

Compute predicted values of random effects for each patient

Usage

RElmeNB(theta, alpha, betas, delta, formula, ID, Vcode = NULL, data, AR, RE, rel.tol = .Machine$double.eps^0.8, expG = FALSE)

Arguments

theta
A scalar containing the estimated variance of the random effect distribution, $theta$.
alpha
A scalar containing the estimated dispersion parameter, $alpha$.
betas
A vector containing the estimated regression coefficients, $beta$.
delta
AR(1) parameter, $delta$
ID
See lmeNB.
Vcode
Necessary only if the AR(1) model is used. See lmeNB.
RE
The distribution of random effects $G[i]$. If RE="G" then the random effects are assumed to be from the gamma distribution. If RE="N" then they are assumed to be form the log-normal distribution.

The current version of RElmeNB only accept parametric model.

AR
See lmeNB.
formula
See lmeNB.
data
See lmeNB.
rel.tol
relative tolerance for the integration of the random effect. passed to integrate function.
expG
Internal use only

Value

return the predicted RE of each patient.

References

Detection of unusual increases in MRI lesion counts in individual multiple sclerosis patients. (2013) Zhao, Y., Li, D.K.B., Petkau, A.J., Riddehough, A., Traboulsee, A., Journal of the American Statistical Association.

See Also

The main function to fit the Negative Binomial mixed-effect model: lmeNB,

The subroutines of this function is: fitParaIND, fitParaAR1, fitSemiIND, fitSemiAR1,

The subroutines of index.batch to compute the conditional probability index: jCP.ar1, CP1.ar1, MCCP.ar1, CP.ar1.se, CP.se, jCP,

The functions to generate simulated datasets: rNBME.R.

Examples

Run this code
## See the examples in help files of rNBME.R.

Run the code above in your browser using DataLab