Density, distribution function, quantile function and random generation for the four-parameter logit-logistic distribution.
dll(x, mu, sigma, xi=0, lambda=1, log = FALSE)
pll(q, mu, sigma, xi=0, lambda=1, lower.tail=TRUE, log.p=FALSE)
qll(p, mu, sigma, xi=0, lambda=1, lower.tail=TRUE, log.p=FALSE)
rll(n, mu, sigma, xi=0, lambda=1)
vector of quantiles
vector of probabilitiies
number of observations. If length(n) > 1
, the length is taken to be the number required.
parameters of the distribution, xi
(minimum) defaults to 0 and lambda
(max-min) to 1.
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are \(P[X \le x]\) otherwise \(P[X > x]\).
dll
gives the density, pll
gives the distribution function, qll
gives the quantile function, and rll
generates random deviates.
Invalid arguments will result in return value NaN
.
The length of the result is determined by n
for rll
, and is the maximum of the lengths of the numerical arguments for the other functions.
The numerical arguments other than n
are recycled to the length of the result. Only the first elements of the logical arguments are used.
The logit-logistic cdf and pdf are $$F(d|\xi,\lambda,\mu,\sigma) = \frac{1}{1+e^{(\frac{\mu}{\sigma})} (\frac{d-\xi}{\xi+\lambda-d})^{-\frac{1}{\sigma}}}$$
$$f(d|\xi,\lambda,\mu,\sigma) = \frac{\lambda}{\sigma}\frac{1}{(d-\xi)(\xi+\lambda-d)} \frac{1}{e^{-\frac{\mu}{\sigma}}(\frac{d-\xi}{\xi+\lambda-d})^{\frac{1}{\sigma}}+e^{\frac{\mu}{\sigma}}(\frac{d-\xi}{\xi+\lambda-d})^{-\frac{1}{\sigma}}+2}$$ Parameter \(\xi\) is the minimum, \(\lambda>0\) the width of range (max-min), \(\mu\) controls the skewness and \(\sigma\) the curtosis.
Mingliang Wang and Keith Rennolls, 2005. Tree diameter distribution modelling: introducing the logit-logistic distribution. Canadian Journal of Forest Research, 35(6): 1305-1313, 10.1139/x05-057.
Mehtatalo, Lauri and Lappi, Juha 2020. Biometry for Forestry and Environmental Data: with examples in R. New York: Chapman and Hall/CRC. 426 p. 10.1201/9780429173462
# NOT RUN {
data(spati)
d<-spati$d[spati$plot==22]
hist(d,freq=FALSE)
d0<-seq(0,60,0.1)
lines(d0,dll(d0,0.630,0.573,3.561,35.2))
# }
Run the code above in your browser using DataLab