powered by
Solve for local minimum with one dimensional golden section one of the regularization parameters of the lmmen penalty.
golden_section(dat, init.beta, pen.effect = "FE.L1", opt.lb = 0, opt.ub = 1, opt.maxiter = 100, opt.tol = 0.1, opt.tau = (sqrt(5) - 1)/2)
matrix, matrix that includes y (response),X (population covariates), Z (random effects covariates (not incl random intercept))
numeric, initial fixed effects estimates
character,which penalty to search on c('FE.L1','RE.L1',FE.L2'','RE.L2'), Default: 'FE.L1'
numeric, start of search interval, Default: 0
numeric, end of search interval, Default: 1
numeric, maximum iterations to search, Default: 100
numeric, accuracy value, Default: 0.1
numeric, golden proportion coefficient (~0.618) Default: (sqrt(5) - 1)/2
lmmen list object inluding lmmen fit object of min BIC solution and summary statistics from the grid searc
# NOT RUN { dat <- initialize_example(n.i = 5,n = 30,q=4,seed=1) init <- init.beta(dat,method='glmnet') golden_section(dat,init,pen.effect = 'FE.L1') # }
Run the code above in your browser using DataLab