powered by
Solve for local minimum with two dimensional golden section on L1 lmmen penalties.
golden_section_2d(dat, init.beta, l2 = c(1, 1), opt.lb = c(0, 0), opt.ub = c(1, 1), opt.maxiter = 100, opt.tol = 0.1, opt.tau = (sqrt(5) - 1)/2)
matrix, matrix that includes y (response),X (population covariates), Z (random effects covariates (not incl random intercept))
numeric, initial fixed effects estimates
numeric, L2 penalty levels Default: c(1, 1)
numeric, start of interval for L1 fixed and L1 random effects, Default: c(0, 0)
numeric, end of interval for L1 fixed and L1 random effects Default: c(1, 1)
numeric, maximum iterations to search, Default: 100
numeric, accuracy value, Default: 0.1
numeric, golden proportion coefficient (~0.618) Default: (sqrt(5) - 1)/2
lmmen list object inluding lmmen fit object of min BIC solution and summary statistics from the grid search
# NOT RUN { dat <- initialize_example(n.i = 5,n = 30,q=4,seed=1) init <- init.beta(dat,method='glmnet') golden_section_2d(dat,init) # }
Run the code above in your browser using DataLab