Learn R Programming

lmom (version 1.1)

cdfgpa: Generalized Pareto distribution

Description

Distribution function and quantile function of the generalized Pareto distribution.

Usage

cdfgpa(x, para = c(0, 1, 0))
quagpa(f, para = c(0, 1, 0))

Arguments

x
Vector of quantiles.
f
Vector of probabilities.
para
Numeric vector containing the parameters of the distribution, in the order $\xi, \alpha, k$ (location, scale, shape).

Value

  • cdfgpa gives the distribution function; quagpa gives the quantile function.

Details

The generalized Pareto distribution with location parameter $\xi$, scale parameter $\alpha$ and shape parameter $k$ has distribution function $$F(x)=1-\exp(-y)$$ where $$y=-k^{-1}\log(1-k(x-\xi)/\alpha),$$ with $x$ bounded by $\xi+\alpha/k$ from below if $k<0$ and="" from="" above="" if="" $k="">0$, and quantile function $$x(F)=\xi-{\alpha\over k}(1-(1-F)^k).$$ The exponential distribution is the special case $k=0$. The uniform distribution is the special case $k=1$.

See Also

cdfexp for the exponential distribution. cdfkap for the kappa distribution and cdfwak for the Wakeby distribution, which generalize the generalized Pareto distribution.

Examples

Run this code
# Random sample from the generalized Pareto distribution
# with parameters xi=0, alpha=1, k=-0.5.
quagpa(runif(100), c(0,1,-0.5))

Run the code above in your browser using DataLab