Learn R Programming

lmom (version 1.1)

cdfwak: Wakeby distribution

Description

Distribution function and quantile function of the Wakeby distribution.

Usage

cdfwak(x, para = c(0, 1, 0, 0, 0))
quawak(f, para = c(0, 1, 0, 0, 0))

Arguments

x
Vector of quantiles.
f
Vector of probabilities.
para
Numeric vector containing the parameters of the distribution, in the order $\xi, \alpha, \beta, \gamma, \delta$.

Value

  • cdfwak gives the distribution function; quawak gives the quantile function.

Details

The Wakeby distribution with parameters $\xi$, $\alpha$, $\beta$, $\gamma$ and $\delta$ has quantile function $$x(F)=\xi+{\alpha\over\beta}(1-(1-F)^\beta)-{\gamma\over\delta}(1-(1-F)^\delta).$$ The parameters are restricted as in Hosking and Wallis (1997, Appendix A.11):
  • either$\beta+\delta>0$or$\beta=\gamma=\delta=0$;
  • if$\alpha=0$then$\beta=0$;
  • if$\gamma=0$then$\delta=0$;
  • $\gamma\ge0$;
  • $\alpha+\gamma\ge0$.
The distribution has a lower bound at $\xi$ and, if $\delta

References

Hosking, J. R. M. and Wallis, J. R. (1997). Regional frequency analysis: an approach based on L-moments, Cambridge University Press, Appendix A.11.

See Also

cdfgpa for the generalized Pareto distribution. cdfexp for the exponential distribution.

Examples

Run this code
# Random sample from the Wakeby distribution
# with parameters xi=0, alpha=30, beta=20, gamma=1, delta=0.3.
quawak(runif(100), c(0,30,20,1,0.3))

Run the code above in your browser using DataLab