Computes the parameters of a probability distribution
as a function of the
pelexp | exponential | |
pelgam | gamma | |
pelgev | generalized extreme-value | |
pelglo | generalized logistic | |
pelgpa | generalized Pareto | |
pelgno | generalized normal | |
pelgum | Gumbel (extreme-value type I) | |
pelkap | kappa | |
pelln3 | three-parameter lognormal | |
pelnor | normal | |
pelpe3 | Pearson type III | |
pelwak | Wakeby | |
pelwei | Weibull |
pelexp(lmom)
pelgam(lmom)
pelgev(lmom)
pelglo(lmom)
pelgno(lmom)
pelgpa(lmom, bound = NULL)
pelgum(lmom)
pelkap(lmom)
pelln3(lmom, bound = NULL)
pelnor(lmom)
pelpe3(lmom)
pelwak(lmom, bound = NULL, verbose = FALSE)
pelwei(lmom, bound = NULL)
A numeric vector containing the parameters of the distribution.
Numeric vector containing the
Lower bound of the distribution. If NULL
(the default),
the lower bound will be estimated along with the other parameters.
Logical: whether to print a message when not all parameters of the distribution can be computed.
J. R. M. Hosking jrmhosking@gmail.com
Numerical methods and accuracy are as described in
Hosking (1996, pp. 10--11).
Exception:
if pelwak
is unable to fit a Wakeby distribution using all 5
The kappa and Wakeby distributions have 4 and 5 parameters respectively
but cannot attain all possible values of the first 4 or 5 pelkap
can fit only kappa distributions with
lmom
does not satisfy this constraint.
Function pelwak
can fit a Wakeby distribution only if
the lmrd(distributions="WAK.LB")
,
and if pelwak
will fit a generalized Pareto distribution
(a special case of the Wakeby distribution) to the first three
Hosking, J. R. M. (1996).
Fortran routines for use with the method of
pelp
for parameter estimation of a general distribution
specified by its cumulative distribution function or quantile function.
lmrexp
, etc., to compute the
For individual distributions, see their cumulative distribution functions:
cdfexp | exponential | |
cdfgam | gamma | |
cdfgev | generalized extreme-value | |
cdfglo | generalized logistic | |
cdfgpa | generalized Pareto | |
cdfgno | generalized normal | |
cdfgum | Gumbel (extreme-value type I) | |
cdfkap | kappa | |
cdfln3 | three-parameter lognormal | |
cdfnor | normal | |
cdfpe3 | Pearson type III | |
cdfwak | Wakeby | |
cdfwei | Weibull |
# Sample L-moments of Ozone from the airquality data
data(airquality)
lmom <- samlmu(airquality$Ozone)
# Fit a GEV distribution
pelgev(lmom)
Run the code above in your browser using DataLab