Learn R Programming

lmomco (version 0.92)

qua.ostat: Compute the Quantiles of the Distribution of an Order Statistic

Description

This function computes a specified quantile by nonexceedance probability $F$ for the $j$th-order statistic of a sample of size $n$ for a given distribution. Let the quantile function (inverse distribution) of the Beta distribution be

$$\mathrm{B}^{-1}(F,j,n-j+1) \mbox{,}$$

and let $x(F,\Theta)$ represent the quantile function of the given distribution and $\Theta$ represents a vector of distribution parameters. The quantile function of the distribution of the $j$th-order statistic is

$$x(\mathrm{B}^{-1}(F,j,n-j+1),\Theta) \mbox{.}$$ qua.ostat(f,j,n,para=NULL) f{The nonexceedance probability $F$ for the quantile.} j{The $j$th-order statistic $x_{1:n} \le x_{2:n} \le \ldots \le x_{j:n} \le x_{n:n}.$} n{The sample size.} para{A distribution parameter list from a function such as vec2par or lmom2par.} The quantile of the distribution of the $j$th-order statistic is returned. Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton, Fla. [object Object] lmom2par, vec2par gpa <- vec2par(c(100,500,0.5),type='gpa') n <- 20 # the sample size j <- 15 # the 15th order statistic F <- 0.99 # the 99th percentile theoOstat <- qua.ostat(F,j,n,gpa)

# Let us test this value against a brute force estimate. Jth <- vector(mode = "numeric") for(i in seq(1,10000)) { Q <- sort(rlmomco(n,gpa)) Jth[i] <- Q[j] } bruteOstat <- quantile(Jth,F) # estimate by built-in function theoOstat <- signif(theoOstat,digits=5) bruteOstat <- signif(bruteOstat,digits=5) cat(c("Theoretical=",theoOstat," Simulated=",bruteOstat,"")) distribution

Arguments