Learn R Programming

lmomco (version 1.3.3)

quakur: Quantile Function of the Kumaraswamy Distribution

Description

This function computes the quantiles $0 < x < 1$ of the Kumaraswamy distribution given parameters ($\alpha$ and $\beta$) of the distribution computed by parkur. The quantile function of the distribution is

$$x(F) = (1 - (1-F)^{1/\beta})^{1/\alpha} \mbox{,}$$

where $x(F)$ is the quantile for nonexceedance probability $F$, $\alpha$ is a shape parameter, and $\beta$ is a shape parameter.

Usage

quakur(f, para)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from parkur or similar.

Value

  • Quantile value for nonexceedance probability $F$.

References

Jones, M.C., 2009, Kumaraswamy's distribution---A beta-type distribution with some tractability advantages: Statistical Methodology, v.6, pp. 70--81.

See Also

cdfkur, parkur

Examples

Run this code
lmr <- lmom.ub(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
  quakur(0.5,parkur(lmr))

Run the code above in your browser using DataLab