The Gini mean difference statistic $\mathcal{G}$ is a robust estimator of distribution scale
and is closely related to the second L-moment $\lambda_2 = \mathcal{G}/2$.
$$\mathcal{G} = \frac{2}{n(n-1)}\sum_{i=1}^n (2i - n - 1) X_{i:n}$$
where $X_{i:n}$ are the order statistics.
Usage
gini.mean.diff(x)
Arguments
x
A vector of data values that will be reduced to non-missing values.
Value
An R list is returned.
giniThe gini mean difference $\mathcal{G}$
L2The L-scale (second L-moment) via $0.5*\mathcal{G}$
sourceAn attribute identifying the computational source of the Gini's Mean Difference: gini.mean.diff.
encoding
UTF-8
References
Hosking, J.R.M., 1990, L-moments---Analysis and estimation of
distributions using linear combinations of order statistics: Journal
of the Royal Statistical Society, Series B, vol. 52, p. 105--124.
Jurečková{Jureckova}, J., and Picek, J., 2006, Robust statistical methods
with R: Boca Raton, Fla., Chapman and Hall/CRC, ISBN 1--58488--454--1,
197~p.