Learn R Programming

lmomco (version 1.4.3)

pdfcau: Probability Density Function of the Cauchy Distribution

Description

This function computes the probability density of the Cauchy distribution given parameters ($\xi$ and $\alpha$) of the distribution provided by parcau or vec2par. The probability density function of the distribution is

$$f(x) = \left(\pi \alpha [1 + \left({\frac{x-\xi}{\alpha}}\right)^2] \right)^{-1} \mbox{,}$$

where $f(x)$ is the probability density for quantile $x$, $\xi$ is a location parameter and $\alpha$ is a scale parameter.

Usage

pdfcau(x, para)

Arguments

x
A real value.
para
The parameters from parcau or vec2par.

Value

  • Probability density ($f$) for $x$.

References

Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, vol. 43, pp. 299--314.

Evans, Merran, Hastings, Nicholas, Peacock, J.B., 2000, Statistical distributions: 3rd ed., Wiley, New York.

Gilchrist, W.G., 2000, Statistical modeling with quantile functions: Chapman and Hall/CRC, Boca Raton, FL.

See Also

cdfcau, quacau, parcau, vec2par

Examples

Run this code
cau <- vec2par(c(12,12),type='cau') 
  x <- quacau(0.5,cau)
  pdfcau(x,cau)

Run the code above in your browser using DataLab