Learn R Programming

lmomco (version 1.4.3)

pdfkap: Probability Density Function of the Kappa Distribution

Description

This function computes the probability density of the Kappa distribution given parameters ($\xi$, $\alpha$, $\kappa$, and $h$) of the distribution computed by pargev. The probability density function of the distribution is

$$f(x) = \alpha^{-1} [1-\kappa(x - \xi)/\alpha]^{1/k-1} \times [F(x)]^{1-h}$$

where $f(x)$ is the probability density for quantile $x$, $F(x)$ is the cumulative distribution function of the distribution (cdfkap)), $\xi$ is a location parameter, $\alpha$ is a scale parameter, and $\kappa$ is a shape parameter.

Usage

pdfkap(x, para)

Arguments

x
A real value.
para
The parameters from parkap or similar.

Value

  • Probability density ($f$) for $x$.

References

Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.

Sourced from written communication with Dr. Hosking in October 2007.

See Also

cdfkap, quakap, parkap

Examples

Run this code
kap <- vec2par(c(1000,15000,0.5,-0.4),type='kap')
F <- nonexceeds()
x <- quakap(F,kap)
check.pdf(pdfkap,kap,plot=TRUE)

Run the code above in your browser using DataLab