Learn R Programming

lmomco (version 1.4.3)

pdfkur: Probability Density Function of the Kumaraswamy Distribution

Description

This function computes the probability density of the Kumaraswamy distribution given parameters ($\alpha$ and $\beta$) of the distribution computed by parkur. The probability density function of the distribution is

$$f(x) = \alpha\beta x^{\alpha - 1}(1-x^\alpha)^{\beta-1} \mbox{,}$$

where $f(x)$ is the nonexceedance probability for quantile $x$, $\alpha$ is a shape parameter, and $\beta$ is a shape parameter.

Usage

pdfkur(x, para)

Arguments

x
A real value.
para
The parameters from parkur or similar.

Value

  • Probability density ($f$) for $x$.

References

Jones, M.C., 2009, Kumaraswamy's distribution---A beta-type distribution with some tractability advantages: Statistical Methodology, v.6, pp. 70--81.

See Also

cdfkur, quakur, parkur

Examples

Run this code
lmr <- lmom.ub(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
  kur <- parkur(lmr)
  x <- quakur(0.5,kur)
  pdfkur(x,kur)

Run the code above in your browser using DataLab