Learn R Programming

lmomco (version 1.4.3)

quaray: Quantile Function of the Rayleigh Distribution

Description

This function computes the quantiles of the Rayleigh distribution given parameters ($\xi$ and $\alpha$) of the distribution computed by parray. The quantile function of the distribution is

$$x(F) = \xi + \sqrt{-2\alpha^2\log(1-F)} \mbox{,}$$

where $x(F)$ is the quantile for nonexceedance probability $F$, $\xi$ is a location parameter, and $\alpha$ is a scale parameter.

Usage

quaray(f, para, paracheck=TRUE)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from parray or similar.
paracheck
A logical controlling whether the parameters and checked for validity. Overriding of this check might be extremely important and needed for use of the distribution quantile function in the context of TL-moments with nonzero trimming.

Value

  • Quantile value for nonexceedance probability $F$.

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, parray

Examples

Run this code
lmr <- lmom.ub(c(123,34,4,654,37,78))
  quaray(0.5,parray(lmr))

Run the code above in your browser using DataLab