Learn R Programming

lmomco (version 1.7.3)

cdf2lmom: Compute an L-moment from Cumulative Distribution Function

Description

Compute an L-moment from a cumulative distribution function. This function is sequentially called by the cdf2lmoms function to mimic the output structure seen by other L-moment computation functions in the lmomco package.

For $r = 1$, the quantile function is actually used for numerical integration to compute the mean. The expression for the mean is $$\lambda_1 = \int_0^1 x(F)\; \mathrm{d} F$$ for quantile function $x(F)$ and nonexceedance probability $F$. For $r \ge 2$, the L-moments can be computed by $$\lambda_r = \frac{1}{r}\sum_{j=0}^{r-2} (-1)^j {r-2 \choose j}{r \choose j+1} \int_{-\infty}^{\infty} \! [F(x)]^{r-j-1}\times [1 - F(x)]^{j+1}\; \mathrm{d}x$$ for cumulative distribution function $F(x)$. This equation is described by Asquith (2011, eq. 6.8), Hosking (1996), and Jones (2004).

Usage

cdf2lmom(r, para, fdepth=0, silent=TRUE, ...)

Arguments

r
The order of the L-moment.
para
The parameters from lmom2par or similar.
fdepth
The depth of the nonexceedance/exceedance probabilities to determine the lower and upper integration limits through a call to the par2qua function. The default of 0 implies the quantile for $F=0$ and quanti
silent
A logical to be passed into cdf2lmom and then onto the try functions encompassing the integrate function calls.
...
Additional arguments to pass to par2qua and par2cdf.

Value

  • The value for the requested L-moment is returned ($\lambda_r$).

References

Asquith, W.H., 2011a, Distributional analysis with L-moment statistics using the R environment for statistical computing: First edition, CreateSpace Independent Publishing Platform, ISBN 978-1463508418, 344 p.

Hosking, J.R.M., 1996a, Some theoretical results concerning L-moments: Research Report RC14492, IBM Research Division, T.J.~Watson Research Center, Yorktown Heights, New York.

Jones, M.C., 2004, On some expressions for variance, covariance, skewness and L-moments: Journal of Statistical Planning and Inference, v. 126, pp. 97--106.

See Also

cdf2lmoms

Examples

Run this code
para <- vec2par(c(.9,.4), type="nor")
cdf2lmom(4, para)

Run the code above in your browser using DataLab