Learn R Programming

lmomco (version 1.7.3)

cdfkur: Cumulative Distribution Function of the Kumaraswamy Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Kumaraswamy distribution given parameters ($\alpha$ and $\beta$) of the distribution computed by parkur. The cumulative distribution function of the distribution is

$$F(x) = 1 - (1-x^\alpha)^\beta \mbox{,}$$

where $F(x)$ is the nonexceedance probability for quantile $x$, $\alpha$ is a shape parameter, and $\beta$ is a shape parameter.

Usage

cdfkur(x, para)

Arguments

x
A real value.
para
The parameters from parkur or similar.

Value

  • Nonexceedance probability ($F$) for $x$.

References

Jones, M.C., 2009, Kumaraswamy's distribution---A beta-type distribution with some tractability advantages: Statistical Methodology, v.6, pp. 70--81.

See Also

quakur, parkur

Examples

Run this code
lmr <- lmom.ub(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
  cdfkur(0.5,parkur(lmr))

Run the code above in your browser using DataLab