Learn R Programming

lmomco (version 1.7.3)

cdflap: Cumulative Distribution Function of the Laplace Distribution

Description

This function computes the cumulative probability or nonexceedance probability of the Laplace distribution given parameters ($\xi$ and $\alpha$) of the distribution computed by parlap. The cumulative distribution function of the distribution is

$$F(x) = \frac{1}{2} e^{(x-\xi)/\alpha} \mbox{ for } x \le \xi \mbox{, and}$$

$$F(x) = 1 - \frac{1}{2} e^{-(x-\xi)/\alpha} \mbox{ for } x > \xi \mbox{,}$$

where $F(x)$ is the nonexceedance probability for quantile $x$, $\xi$ is a location parameter and $\alpha$ is a scale parameter.

Usage

cdflap(x, para)

Arguments

x
A real value.
para
The parameters from parlap or similar.

Value

  • Nonexceedance probability ($F$) for $x$.

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: IBM Research Report RC12210, T.J. Watson Research Center, Yorktown Heights, New York.

See Also

qualap, parlap

Examples

Run this code
lmr <- lmom.ub(c(123,34,4,654,37,78))
  cdflap(50,parlap(lmr))

Run the code above in your browser using DataLab