Learn R Programming

lmomco (version 1.7.3)

lmomray: L-moments of the Rayleigh Distribution

Description

This function estimates the L-moments of the Rayleigh distribution given the parameters ($\xi$ and $\alpha$) from parray. The L-moments in terms of the parameters are

$$\lambda_1 = \xi + \alpha\sqrt{\pi/2} \mbox{,}$$ $$\lambda_2 = \frac{1}{2} \alpha(\sqrt{2} - 1)\sqrt{\pi}\mbox{,}$$ $$\tau_3 = \frac{1 - 3/\sqrt{2} + 2/\sqrt{3}}{1 - 1/\sqrt{2}} = 0.1140 \mbox{, and}$$ $$\tau_4 = \frac{1 - 6/\sqrt{2} + 10/\sqrt{3} - 5\sqrt{4}}{1 - 1/\sqrt{2}} = 0.1054 \mbox{.}$$

Usage

lmomray(para)

Arguments

para
The parameters of the distribution.

Value

  • An R list is returned.
  • L1Arithmetic mean.
  • L2L-scale---analogous to standard deviation.
  • LCVcoefficient of L-variation---analogous to coe. of variation.
  • TAU3The third L-moment ratio or L-skew--analogous to skew.
  • TAU4The fourth L-moment ratio or L-kurtosis---analogous to kurtosis.
  • TAU5The fifth L-moment ratio.
  • L3The third L-moment.
  • L4The fourth L-moment.
  • L5The fifth L-moment.
  • sourceAn attribute identifying the computational source of the L-moments: lmomray.

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

parray, quaray, cdfray

Examples

Run this code
lmr <- lmom.ub(c(123,34,4,654,37,78))
lmr
lmomray(parray(lmr))

Run the code above in your browser using DataLab