rice <- vec2par(c(65,34), type="rice")
lmomrice(rice)
# Use the additional arguments to show how to avoid
# unnecessary overhead when using the Rice, which only
# has two parameters.
rice <- vec2par(c(15,14), type="rice")
system.time(lmomrice(rice, nmom=2))
system.time(lmomrice(rice, nmom=6))
lcvs <- vector(mode="numeric"); i <- 0
SNR <- c(seq(7,0.25, by=-0.25), 0.1)
for(snr in SNR) {
i <- i + 1
rice <- vec2par(c(10,10/snr), type="rice")
lcvs[i] <- lmomrice(rice, nmom=2)$ratios[2]
}
plot(lcvs, SNR,
xlab="COEFFICIENT OF L-VARIATION",
ylab="LOCAL SIGNAL TO NOISE RATIO (NU/ALPHA)")
lines(.lmomcohash$RiceTable$LCV,
.lmomcohash$RiceTable$SNR)
abline(1,0, lty=2)
mtext("Rice Distribution")
text(0.15,0.5, "More noise than signal")
text(0.15,1.5, "More signal than noise")
# A polynomial expression for the relation between
# L-skew and L-kurtosis for the Rice distribution can
# be readily constructed.
T3 <- .lmomcohash$RiceTable$TAU3
T4 <- .lmomcohash$RiceTable$TAU4
LM <- lm(T4~T3+I(T3^2)+I(T3^3)+I(T3^4)+
I(T3^5)+I(T3^6)+I(T3^7)+I(T3^8))
summary(LM)
Residuals:
Min 1Q Median 3Q Max
-4.585e-05 -1.936e-05 6.640e-07 1.905e-05 1.221e-04
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.226e-01 7.997e-07 153348.44 <2e-16
T3 -1.782e-01 6.447e-04 -276.45 <2e-16
I(T3^2) -3.005e+01 1.174e-01 -255.95 <2e-16
I(T3^3) 1.512e+03 8.536e+00 177.18 <2e-16
I(T3^4) -4.017e+04 3.089e+02 -130.03 <2e-16
I(T3^5) 6.365e+05 6.097e+03 104.38 <2e-16
I(T3^6) -5.885e+06 6.672e+04 -88.21 <2e-16
I(T3^7) 2.925e+07 3.799e+05 76.98 <2e-16
I(T3^8) -6.020e+07 8.778e+05 -68.58 <2e-16
---
Residual standard error: 2.009e-05 on 2685 degrees
of freedom. Multiple R-squared: 1,
Adjusted R-squared: 1 F-statistic: 5.37e+07 on 8
and 2685 DF, p-value: < 2.2e-16
Run the code above in your browser using DataLab