where $P^\star_{r}(F)$ is
The quantile function $x(F)$ is approximated by linear interpolation using the approx
function with flat line (constant) extrapolation to the left and right of the end points of the input vector x
. The extrapolation however can be controlled by functional arguments.
lmomsf01(x, f=NULL, a=0, nmom=5, subdivisionscale=50,
sort=TRUE, constantails=TRUE, efs=1e-3)
x
.pp
function for estimation of nonexceedance probabilities in f
if f=NULL
. The default is for the Weibull plotting positions.length(x)
) for the subdivision
argument of the integrate
function. The default value is not optimal but determined by some limited trial and error by the author.rule=2
of the approx
function to be used if constantails=TRUE
or will tail extrapolation using the last left and right tail slopes of the $x$ and $F$ values be used.list
is returned.NULL
if asymmetrical trimming was used.lmoms
set.seed(11)
x <- rnorm(35)
lmomsf01(x)$lambdas # linear approx via weibull
lmomsf01(sort(x), f=pp(x))$lambdas # same
lmomsf01(x, f=pp(x, sort=FALSE))$lambdas # same
pwm2lmom(pwm.pp(x, pp=pp(x, sort=FALSE)))$lambdas # directly by weibull
pwm2lmom(pwm.pp(x, B=1))$lambdas # same
lmoms(x)$lambdas # unbiased estimates
lmr0 <- lmoms(x)
lmr1 <- lmomsf01(sort(x), f=pp(x))
lmr2 <- pwm2lmom(pwm.pp(x, B=1))
Fs <- seq(0.001, 0.999, by=0.001)
F <- pp(x, sort=FALSE)
xofF <- approx(x=F, y=x, xout=Fs, rule=2)$y
plot(qnorm(Fs), xofF, type="l",
xlab="STANDARD NORMAL VARIATE",
ylab="VALUE")
points(qnorm(F), x)
lines(qnorm(Fs), qlmomco(Fs, parnor(lmr0)), col=2)
lines(qnorm(Fs), qlmomco(Fs, parnor(lmr1)))
lines(qnorm(Fs), qlmomco(Fs, parnor(lmr2)), col=3)
Run the code above in your browser using DataLab