Learn R Programming

lmomco (version 1.7.3)

pdfexp: Probability Density Function of the Exponential Distribution

Description

This function computes the probability density of the Exponential distribution given parameters ($\xi$ and $\alpha$) of the distribution computed by parexp. The probability density function of the distribution is

$$f(x) = \alpha^{-1} e^{\left(\frac{-(x - \xi)}{\alpha}\right)}$$

where $f(x)$ is the probability density for the quantile $x$, $\xi$ is a location parameter and $\alpha$ is a scale parameter.

Usage

pdfexp(x, para)

Arguments

x
A real value.
para
The parameters from parexp or similar.

Value

  • Probability density ($F$) for $x$.

References

Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105--124.

Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.

Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.

See Also

cdfexp, quaexp, parexp

Examples

Run this code
lmr <- lmom.ub(c(123,34,4,654,37,78))
  expp <- parexp(lmr)
  x <- quaexp(.5,expp)
  pdfexp(x,expp)

Run the code above in your browser using DataLab