Learn R Programming

lmomco (version 1.7.3)

pdfray: Probability Density Function of the Rayleigh Distribution

Description

This function computes the probability density of the Rayleigh distribution given parameters ($\xi$ and $\alpha$) of the distribution computed by parray. The probability density function of the distribution is

$$f(x) = \frac{x - \xi}{\alpha^2}e^{-(x - \xi)^2/(2\alpha^2)}\mbox{,}$$

where $f(x)$ is the nonexceedance probability for quantile $x$, $\xi$ is a location parameter, and $\alpha$ is a scale parameter.

Usage

pdfray(x, para)

Arguments

x
A real value.
para
The parameters from parray or similar.

Value

  • Probability density ($f$) for $x$.

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, quaray, parray

Examples

Run this code
lmr <- lmom.ub(c(123,34,4,654,37,78))
  ray <- parray(lmr)
  x <- quaray(0.5,ray)
  pdfray(x,ray)

Run the code above in your browser using DataLab