Learn R Programming

lmomco (version 1.7.3)

pdftexp: Probability Density Function of the Truncated Exponential Distribution

Description

This function computes the probability density of the Truncated Exponential distribution given parameters ($\xi$ and $\alpha$) of the distribution computed by partexp. The probability density function of the distribution is

$$f(x) = \frac{\alpha^{-1}\mathrm{exp}(-t/\alpha)}{1 - \mathrm{exp}(-\xi/\alpha)}\mbox{,}$$

where $f(x)$ is the probability density for the quantile $x$, $\xi$ is a location parameter, $\alpha$ is a scale parameter, and $0 \le x \le \xi$. The distribution has $0 < \tau_2 <= 1="" 2$,="" $\xi=""> 0$, and $1/\alpha \ne 0$.

Usage

pdftexp(x, para)

Arguments

x
A real value.
para
The parameters from partexp or similar.

Value

  • Probability density ($F$) for $x$.

References

Vogel, R.M., Hosking, J.R.M., Elphick, C.S., Roberts, D.L., and Reed, J.M., 2008, Goodness of fit of probability distributions for sightings as species approach extinction: Bulletin of Mathematial Biology, v. 71, no. 3, pp. 701--719.

See Also

cdftexp, quatexp, partexp

Examples

Run this code
lmr <- vec2lmom(c(40,0.38), lscale=FALSE)
  expp <- partexp(lmr)
  x <- quatexp(.5,expp)
  pdftexp(x,expp)

Run the code above in your browser using DataLab