Learn R Programming

lmomco (version 1.7.3)

pdfwak: Probability Density Function of the Wakeby Distribution

Description

This function computes the probability density of the Wakeby distribution given parameters ($\xi$, $\alpha$, $\beta$, $\gamma$, and $\delta$) of the distribution computed by pargev. The probability density function of the distribution is

$$f(x) = [\alpha(1-F)^{\beta - 1} + \gamma(1-F)^{-\delta - 1}]^{-1}\mbox{,}$$

where $f(x)$ is the probability density for quantile $x$,$\xi$ is a location parameter, $\alpha$ and $\beta$ are scale parameters, and $\gamma$, and $\delta$ are shape parameters. The five returned parameters from parwak in order are $\xi$, $\alpha$, $\beta$, $\gamma$, and $\delta$.

Usage

pdfwak(x, para)

Arguments

x
A real value.
para
The parameters from parwak or similar.

Value

  • Probability density ($f$) for $x$.

References

Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.

Sourced from written communication with Dr. Hosking in October 2007.

See Also

cdfwak, quawak, parwak

Examples

Run this code
lmr <- vec2lmom(c(1,0.5,.4,.3,.15))
wak <- parwak(lmr)
F <- nonexceeds()
x <- quawak(F,wak)
check.pdf(pdfwak,wak,plot=TRUE)

Run the code above in your browser using DataLab