pargev
. The quantile function of the
distribution is$$x(F) = \xi + \frac{\alpha}{\kappa} \left( 1-(-\log(F))^\kappa \right) \mbox{ for } \kappa \ne 0 \mbox{ and }$$
$$x(F) = \xi - \alpha \log(-\log(F)) \mbox{ for } \kappa = 0 \mbox{,}$$
where $x(F)$ is the quantile for nonexceedance probability $F$, $\xi$ is a location parameter, $\alpha$ is a scale parameter, and $\kappa$ is a shape parameter.
quagev(f, para, paracheck=TRUE)
pargev
or similar.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
cdfgev
, pargev
lmr <- lmom.ub(c(123,34,4,654,37,78))
quagev(0.5,pargev(lmr))
Run the code above in your browser using DataLab